Marshall Thomas Burnett Telephone Number

Sinkhole Glossary

An aquifer is an underground layer of water-bearing permeable rock or unconsolidated materials (gravel, sand, silt, or clay) from which groundwater can be usefully extracted using a water well. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer[1], and aquiclude (or aquifuge), which is a solid, impermeable area underlying or overlying an aquifer. If the impermeable area overlies the aquifer pressure could cause it to become a confined aquifer.
The Atterberg limits are a basic measure of the nature of a fine-grained soil. Depending on the water content of the soil, it may appear in four states: solid, semi-solid, plastic and liquid. In each state the consistency and behavior of a soil is different and thus so are its engineering properties. Thus, the boundary between each state can be defined based on a change in the soil's behavior. The Atterberg limits can be used to distinguish between silt and clay, and it can distinguish between different types of silts and clays. These limits were created by Albert Atterberg, a Swedish chemist.[1] They were later refined by Arthur Casagrande.
An auger is a device for moving solid or liquid material by means of a rotating helical flighting. The material is moved along the axis of rotation. For some uses the helical 'flighting' is enclosed in a tube, for other uses the flighting is not encased. An integral part of a drill, the auger of the drill bit uses this mechanism to remove shavings from the hole being drilled.
In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement. There are three modes of failure that limit bearing capacity: general shear failure, local shear failure, and punching shear failure.
Bentonite is an absorbent aluminium phyllosilicate, generally impure clay consisting mostly of montmorillonite. There are different types of bentonites and their names depend on the dominant elements, such as potassium (K), sodium (Na), calcium (Ca), and aluminum (Al). As noted in several places in the geologic literature, there are some nomenclatorial problems with the classification of bentonite clays. Bentonite usually forms from weathering of volcanic ash, most often in the presence of water. However, the term bentonite, as well as a similar clay called tonstein, have been used for clay beds of uncertain origin. For industrial purposes, two main classes of bentonite exist: sodium and calcium bentonite. In stratigraphy and tephrochronology, completely devitrified (weathered volcanic glass) ash-fall beds are commonly referred to as K-bentonites when the dominant clay species is illite. Other common clay species, and sometimes dominant, are montmorillinite and kaolinite. Kaolinite dominated clays are commonly referred to as tonsteins and are typically associated with coal.
Calcareous is an adjective meaning mostly or partly composed of calcium carbonate, in other words, containing lime or being chalky. The term is used in a wide variety of scientific disciplines.
A cenote (English pronunciation: /sɨˈnoʊtiː/ or /sɛˈnoʊteɪ/; Spanish: [seˈnote]; plural: cenotes; from Yucatec Maya dzonot or ts'onot,[1] meaning "well"[2]) is a sinkhole with exposed rocky edges containing groundwater. It is typically found in the Yucatán Peninsula and some nearby Caribbean islands. The term is derived from a word used by the low-land Yucatec Maya to refer to any location where groundwater is accessible.
Consolidation is a process by which soils decrease in volume. It occurs when stress is applied to a soil that causes the soil particles to pack together more tightly, therefore reducing its bulk volume. When this occurs in a soil that is saturated with water, water will be squeezed out of the soil. The magnitude of consolidation can be predicted by many different methods. In the Classical Method, developed by Karl von Terzaghi, soils are tested with an oedometer test to determine their compression index. This can be used to predict the amount of consolidation.

When stress is removed from a consolidated soil, the soil will rebound, regaining some of the volume it had lost in the consolidation process. If the stress is reapplied, the soil will consolidate again along a recompression curve, defined by the recompression index. The soil which had its load removed is considered to be overconsolidated. This is the case for soils which have previously had glaciers on them. The highest stress that it has been subjected to is termed the preconsolidation stress. The over consolidation ratio or OCR is defined as the highest stress experienced divided by the current stress. A soil which is currently experiencing its highest stress is said to be normally consolidated and to have an OCR of one. A soil could be considered underconsolidated immediately after a new load is applied but before the excess pore water pressure has had time to dissipate.
Collapse sinkholes -thought to be the most common type in Florida, usually happen abruptly and are most often triggered by constant fluctuations in the water-table.
Environmental degradation is the deterioration of the environment through depletion of resources such as air, water and soil; the destruction of ecosystems and the extinction of wildlife. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable.[1]
Erosion is the process of weathering and transport of solids (sediment, soil, rock and other particles) in the natural environment or their source and deposits them elsewhere. It usually occurs due to transport by wind, water, or ice; by down-slope creep of soil and other material under the force of gravity; or by living organisms, such as burrowing animals, in the case of bioerosion.

Erosion is a natural process, but it has been increased dramatically by human land use, especially industrial agriculture, deforestation, and urban sprawl.[1][2] Land that is used for industrial agriculture generally experiences a significant greater rate of erosion than that of land under natural vegetation, or land used for sustainable agricultural practices. This is particularly true if tillage is used, which reduces vegetation cover on the surface of the soil and disturbs both soil structure and plant roots that would otherwise hold the soil in place. However, improved land use practices can limit erosion, using techniques such as terrace-building, conservation tillage practices, and tree planting.

A certain amount of erosion is natural and, in fact, healthy for the ecosystem. For example, gravels continuously move downstream in watercourses. Excessive erosion, however, causes serious problems, such as receiving water sedimentation, ecosystem damage and outright loss of soil. Erosion is distinguished from weathering, which is the process of chemical or physical breakdown of the minerals in the rocks, although the two processes may occur concurrently.
A foundation (also called a groundsill) is a structure that transfers loads to the earth. Foundations are generally broken into two categories: shallow foundations and deep foundations.
A geologist is a scientist who studies the solid and liquid matter that constitutes the Earth as well as the processes and history that has shaped it. Geologists usually engage in studying geology. Geologists, studying more of an applied science than a theoretical one, must approach Geology using physics, chemistry and biology as well as other sciences. Geologists, compared to scientists engaged in other fields, are generally more exposed to the outdoors than staying in laboratories; although some geologists prefer to perform most of their studies in the lab.
Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. Geotechnical engineering includes investigating existing subsurface conditions and materials; determining the relevant physical/mechanical and chemical properties of these materials; evaluating stability of natural slopes and man-made soil deposits; assessing risks posed by site conditions; designing earthworks and structure foundations; and monitoring site conditions, earthwork and foundation construction.
Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil and rock around a site to design earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

Surface exploration can include geologic mapping, geophysical methods, and photogrammetry, or it can be as simple as a geotechnical professional walking around on the site to observe the physical conditions at the site. To obtain information about the soil conditions below the surface, some form of subsurface exploration is required. Methods of observing the soils below the surface, obtaining samples, and determining physical properties of the soils and rocks include test pits, trenching (particularly for locating faults and slide planes), boring, and in situ tests.
Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from, and eventually flows to, the surface naturally; natural discharge often occurs at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Typically, groundwater is thought of as liquid water flowing through shallow aquifers, but technically it can also include soil moisture, permafrost (frozen soil), immobile water in very low permeability bedrock, and deep geothermal or oil formation water. Groundwater is hypothesized to provide lubrication that can possibly influence the movement of faults. It is likely that much of the Earth's subsurface contains some water, which may be mixed with other fluids in some instances.
Groundwater recharge or deep drainage or deep percolation is a hydrologic process where water moves downward from surface water to groundwater. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Recharge occurs both naturally (through the water cycle) and anthropologically (i.e., "artificial groundwater recharge"), where rainwater and or reclaimed water is routed to the subsurface.

Groundwater is recharged naturally by rain and snow melt and to a smaller extent by surface water (rivers and lakes). Recharge may be impeded somewhat by human activities including paving, development, or logging. These activities can result in enhanced surface runoff and reduction in recharge. Use of groundwater, especially for irrigation, may also lower the water tables. Groundwater recharge is an important process for sustainable groundwater management, since the volume-rate abstracted from an aquifer in the long term should be less than or equal to the volume-rate that is recharged.
Karst topography is a landscape shaped by the dissolution of a layer or layers of soluble bedrock, usually carbonate rock such as limestone or dolomite.[1] Due to subterranean drainage, there may be very limited surface water, even to the absence of all rivers and lakes. Many karst regions display distinctive surface features, with sinkholes or dolines being the most common. However, distinctive karst surface features may be completely absent where the soluble rock is mantled, such as by glacial debris, or confined by a superimposed non-soluble rock strata. Some karst regions include thousands of caves, even though evidence of caves that are big enough for human exploration is not a required characteristic of karst. Various karst landforms have been found on all continents except Antarctica.
Limestone is a sedimentary rock composed largely of the mineral calcite (calcium carbonate: CaCO3). Like most other sedimentary rocks, limestones are composed of grains; however, most grains in limestone are skeletal fragments of marine organisms such as coral or foraminifera. Other carbonate grains comprising limestones are ooids, peloids, intraclasts, and extraclasts. Some limestones do not consist of grains at all and are formed completely by the chemical precipitation of calcite or aragonite. i.e. travertine.

The solubility of limestone in water and weak acid solutions leads to karst landscapes. Regions overlying limestone bedrock tend to have fewer visible groundwater sources (ponds and streams), as surface water easily drains downward through joints in the limestone. While draining, water and organic acid from the soil slowly (over thousands or millions of years) enlarges these cracks; dissolving the calcium-carbonate and carrying it away in solution. Most cave systems are through limestone bedrock.
Masonry is the building of structures from individual units laid in and bound together by mortar; the term masonry can also refer to the units themselves. The common materials of masonry construction are brick, stone such as marble, granite, travertine, limestone; concrete block, glass block, and tile. Masonry is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern in which the units are assembled can significantly affect the durability of the overall masonry construction. Masonry units, such as brick, tile, stone, glass brick or concrete block generally conform to the requirements specified in the 2003 International Building Code (IBC) Section 2103.
Prestressed concrete is a method for overcoming concrete's natural weakness in tension.[1][2] It can be used to produce beams, floors or bridges with a longer span than is practical with ordinary reinforced concrete. Prestressing tendons (generally of high tensile steel cable or rods) are used to provide a clamping load which produces a compressive stress that offsets the tensile stress that the concrete compression member would otherwise experience due to a bending load. Traditional reinforced concrete is based on the use of steel reinforcement bars, rebars, inside poured concrete. Prestressing can be accomplished in three ways: pre-tensioned concrete, and bonded or unbonded post-tensioned concrete.
Reclaimed water, sometimes called recycled water, is former wastewater (sewage) that has been treated to remove solids and certain impurities, and then used in sustainable landscaping irrigation or to recharge groundwater aquifers. This is done for sustainability and water conservation, rather than discharging the treated wastewater to surface waters such as rivers and oceans.
A retention basin, is a type of best management practice (BMP) that is used to manage stormwater runoff to prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. Sometimes called a wet pond or wet detention basin, it is an artificial lake with vegetation around the perimeter, and includes a permanent pool of water in its design.[1][2]

It is distinguished from a detention basin, sometimes called a dry pond, which temporarily stores water after a storm, but eventually empties out at a controlled rate to a downstream water body. It also differs from an infiltration basin which is designed to direct stormwater to groundwater through permeable soils. Wet ponds are frequently used for water quality improvement, groundwater recharge, flood protection, aesthetic improvement or any combination of these. Sometimes they act as a replacement for the natural absorption of a forest or other natural process that was lost when an area is developed. As such, these structures are designed to blend into neighborhoods and viewed as an amenity.[3]
A sinkhole, also known as a sink, shake hole, swallow hole, swallet, doline or cenote, is a natural depression or hole in the earth's surface caused by karst processes - the chemical dissolution of carbonate rocks[1] or suffosion processes[2] f.e. in sandstone. Sinkholes may vary in size from less than 1 to 600 meters (3.3 to 2,000 ft) both in diameter and depth, and vary in form from soil-lined bowls to bedrock-edged chasms. They may be formed gradually or suddenly, and are found worldwide. These terms are often used interchangeably, though many distinguish between features a surface stream flows into and features with no such input. Only the former are described as sinks, swallow holes or swallets.
Soil compaction occurs when the weight of heavy machinery compresses the soil, causing it to lose pore space. Soil compaction may also occur due to a lack of water in the soil.[1] Affected soils become less able to absorb rainfall, thus increasing runoff and erosion. Plants have difficulty in compacted soil because the mineral grains are pressed together, leaving little space for air and water, which are essential for root growth. Burrowing animals also find it a hostile environment, because the denser soil is more difficult to penetrate.

The ability of a soil to recover from compaction depends on climate, mineralogy and fauna. Soils with high shrink-swell capacity, such as Vertisols, recover quickly from compaction where moisture conditions are variable (dry spells shrink the soil, causing it to crack). But clays which do not crack as they dry cannot recover from compaction on their own unless they host ground-dwelling animals such as earthworms — the Cecil soil series is an example.
Solution sinkholes are usually bowl-shaped depressions in the ground that form slowly over time from wind and surface water erosion. Subsidence sinkholes also form gradually and usually appear as concave depressions.
A spring is a component of the hydrosphere, namely any natural occurrence where water flows to the surface of the earth from below the surface. Thus it is where the aquifer surface meets the ground surface.
Subsidence sinkholes are usually small (only a few feet in diameter and depth) because they quickly fill in with sand and clay and other sediments. If sediments fill the depression and restrict the flow of surface water into the aquifer, lakes and ponds can form where water accumulates.
Surface runoff is the water flow that occurs when soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. This is a major component of the hydrologic cycle.[1][2] Runoff that occurs on surfaces before reaching a channel is also called a nonpoint source. If a nonpoint source contains man-made contaminants, the runoff is called nonpoint source pollution. A land area which produces runoff that drains to a common point is called a watershed. When runoff flows along the ground, it can pick up soil contaminants such as petroleum, pesticides (in particular herbicides and insecticides), or fertilizers that become discharge or nonpoint source pollution.[3]
Surface water is water collecting on the ground or in a stream, river, lake, wetland, or ocean; it is related to water collecting as groundwater or atmospheric water. Surface water is naturally replenished by precipitation and naturally lost through discharge to evaporation and sub-surface seepage into the groundwater. Although there are other sources of groundwater, such as connate water and magmatic water, precipitation is the major one and groundwater originated in this way is called meteoric water. Land surface water is the largest source of fresh water.
The water table is the level at which the groundwater pressure is equal to atmospheric pressure. It may be conveniently visualized as the 'surface' of the groundwater in a given vicinity. It usually coincides approximately with the 'phreatic surface', but can be many feet above it. As water infiltrates through pore spaces in the soil, it first passes through the zone of aeration, where the soil is unsaturated. At increasing depths water fills in more spaces, until the zone of saturation is reached. The relatively horizontal plane atop this zone constitutes the water table. A sustainable amount of water within a unit of sediment or rock, below the water table, in the phreatic zone is called an aquifer. The ability of the aquifer to store groundwater is dependent on the primary and secondary porosity and permeability of the rock or soil.

Except where otherwise noted, content on this web page is licensed under a Creative Commons Attribution 3.0 License.